Roberta model (Multi Head)

This notebook contains some example of how to use the Roberta-based models in this NLP library

In this series, we walk through some of the capability of this library: single-head classification, multi-head classification, multi-label classification, and regression. If you want a more detailed tutorial, check this out

import os
#This will specify a (or a list) of GPUs for training
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from that_nlp_library.text_transformation import *
from that_nlp_library.text_augmentation import *
from that_nlp_library.text_main import *
from that_nlp_library.utils import seed_everything
from underthesea import text_normalize
from functools import partial
from pathlib import Path
import pandas as pd
import numpy as np
import nlpaug.augmenter.char as nac
from datasets import load_dataset
import random
from transformers import RobertaTokenizer
from datasets import Dataset

Define the custom augmentation function

def nlp_aug_stochastic(x,aug=None,p=0.5):
    if not isinstance(x,list): 
        if random.random()<p: return aug.augment(x)[0]
        return x
    news=[]
    originals=[]
    for _x in x:
        if random.random()<p: news.append(_x)
        else: originals.append(_x)
    # only perform augmentation when needed
    if len(news): news = aug.augment(news)
    return news+originals
aug = nac.KeyboardAug(aug_char_max=3,aug_char_p=0.1,aug_word_p=0.07)
nearby_aug_func = partial(nlp_aug_stochastic,aug=aug,p=0.3)

Create a TextDataController object

We will reuse the data and the preprocessings in this tutorial

dset = load_dataset('sample_data',data_files=['Womens_Clothing_Reviews.csv'],split='train')
tdc = TextDataController(dset,
                         main_text='Review Text',
                         label_names=['Division Name','Department Name'],
                         sup_types=['classification','classification'],
                         filter_dict={'Review Text': lambda x: x is not None,
                                      'Department Name': lambda x: x is not None,
                                     },
                         metadatas=['Title'],
                         content_transformations=[text_normalize,str.lower],
                         content_augmentations= [nearby_aug_func,str.lower], 
                         val_ratio=0.2,
                         batch_size=1000,
                         seed=42,
                         num_proc=20,
                         verbose=False
                        )

Define our tokenizer for Roberta

_tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
/home/quan/anaconda3/envs/nlp_dev/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
  warnings.warn(

Process and tokenize our dataset

tdc.process_and_tokenize(_tokenizer,max_length=100,shuffle_trn=True)
tdc.main_ddict
DatasetDict({
    train: Dataset({
        features: ['Title', 'Review Text', 'Division Name', 'Department Name', 'label', 'input_ids', 'attention_mask'],
        num_rows: 18101
    })
    validation: Dataset({
        features: ['Title', 'Review Text', 'Division Name', 'Department Name', 'label', 'input_ids', 'attention_mask'],
        num_rows: 4526
    })
})

Model Experiment: Roberta Multi-Head Classification (with Hidden Layer Concatenation)

from that_nlp_library.models.roberta.classifiers import *
from that_nlp_library.model_main import *
from sklearn.metrics import f1_score, accuracy_score

Define and train a custom Roberta model

from transformers.models.roberta.modeling_roberta import RobertaModel
num_classes = [len(tdc.label_lists[0]),len(tdc.label_lists[1])] 
num_classes
[3, 6]
roberta_body = RobertaModel.from_pretrained('roberta-base')
/home/quan/anaconda3/envs/nlp_dev/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
  warnings.warn(
Some weights of RobertaModel were not initialized from the model checkpoint at roberta-base and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
# our model is more complex, so it's best to define some of its arguments
_model_kwargs={
    # overall model hyperparams
    'head_class_sizes':num_classes,
    'head_class': ConcatHeadSimple,
    'is_multilabel':tdc.is_multilabel, # False
    'is_multihead':tdc.is_multihead, # True

#     'head_weights':[1,2], # weights for label 1 and label 2. This means L2's weight is twice as much as L1's
    # if no `head_weights` is set, default to 1 for all labels
    
    # classfication head hyperparams
    'layer2concat':2, # you can change the number of layers to concat (default is 4, based on the paper)
    'classifier_dropout':0.1 
}
model = model_init_classification(model_class = RobertaHiddenStateConcatForSequenceClassification,
                                  cpoint_path = 'roberta-base', 
                                  output_hidden_states=True, # since we are using 'hidden layer contatenation' technique
                                  seed=42,
                                  body_model=roberta_body,
                                  model_kwargs = _model_kwargs)

metric_funcs = [partial(f1_score,average='macro'),accuracy_score]
controller = ModelController(model,tdc,seed=42)
Loading body weights. This assumes the body is the very first block of your custom architecture
Total parameters: 124659465
Total trainable parameters: 124659465

And we can start training our model

seed_everything(42)
lr = 1e-4
bs=32
wd=0.01
epochs= 3

controller.fit(epochs,lr,
               metric_funcs=metric_funcs,
               batch_size=bs,
               weight_decay=wd,
               save_checkpoint=False,
               compute_metrics=compute_metrics,
              )
[849/849 04:59, Epoch 3/3]
Epoch Training Loss Validation Loss F1 Score Division name Accuracy Score Division name F1 Score Department name Accuracy Score Department name
1 No log 1.216166 0.419407 0.614229 0.638160 0.861688
2 1.351000 1.129738 0.450979 0.616659 0.688072 0.884887
3 1.351000 1.127698 0.463073 0.620636 0.686571 0.885329

controller.trainer.model.save_pretrained('./sample_weights/my_model1')

Make predictions

Load trained model

_model_kwargs
{'head_class_sizes': [3, 6],
 'head_class': that_nlp_library.models.roberta.classifiers.ConcatHeadSimple,
 'is_multilabel': False,
 'is_multihead': True,
 'layer2concat': 2,
 'classifier_dropout': 0.1}
trained_model = model_init_classification(model_class = RobertaHiddenStateConcatForSequenceClassification,
                                          cpoint_path = Path('./sample_weights/my_model1'), 
                                          output_hidden_states=True,
                                          seed=42,
                                          model_kwargs = _model_kwargs)

controller = ModelController(trained_model,tdc,seed=42)
Some weights of the model checkpoint at sample_weights/my_model1 were not used when initializing RobertaHiddenStateConcatForSequenceClassification: ['body_model.pooler.dense.bias', 'body_model.pooler.dense.weight']
- This IS expected if you are initializing RobertaHiddenStateConcatForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaHiddenStateConcatForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Total parameters: 124068873
Total trainable parameters: 124068873

Predict Train/Validation set

df_val = controller.predict_ddict(ds_type='validation')
-------------------- Start making predictions --------------------
df_val = df_val.to_pandas()
df_val.head()
Title Review Text Division Name Department Name label input_ids attention_mask pred_Division Name pred_prob_Division Name pred_Department Name pred_prob_Department Name
0 . such a fun jacket ! great to wear in the spr... General Petite Intimate [1, 2] [0, 4, 215, 10, 1531, 8443, 27785, 372, 7, 356... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.557212 Jackets 0.833067
1 simple and elegant simple and elegant . i thought this shirt was ... General Petite Tops [1, 4] [0, 41918, 8, 14878, 479, 939, 802, 42, 6399, ... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.626316 Tops 0.987408
2 retro and pretty retro and pretty . this top has a bit of a ret... General Tops [0, 4] [0, 4903, 1001, 8, 1256, 479, 42, 299, 34, 10,... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.617450 Tops 0.987884
3 summer/fall wear summer / fall wear . i first spotted this on a... General Petite Dresses [1, 1] [0, 18581, 2089, 1589, 1136, 3568, 479, 939, 7... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.556868 Dresses 0.982287
4 perfect except slip perfect except slip . this is my new favorite ... General Petite Dresses [1, 1] [0, 20473, 4682, 9215, 479, 42, 16, 127, 92, 2... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.596989 Dresses 0.983380

You can try to get your metric to see if it matches your last traing epoch’s above

f1_score(df_val['Division Name'],df_val['pred_Division Name'],average='macro')
0.46307304608838856
f1_score(df_val['Department Name'],df_val['pred_Department Name'],average='macro')
0.6863195959806639

Predict Test set

We will go through details on how to make a prediction on a completely new and raw dataset using our trained model. For now, let’s reuse the sample csv and pretend it’s our test set

df_test = pd.read_csv('sample_data/Womens_Clothing_Reviews.csv',encoding='utf-8-sig').sample(frac=0.2,random_state=1)
# drop NaN values in the label column
df_test = df_test[~df_test['Department Name'].isna()].reset_index(drop=True)

# drop the label (you don't need to, but this is necessary to simulate an actual test set)
df_test.drop(['Division Name','Department Name'],axis=1,inplace=True)
_test_dset = Dataset.from_pandas(df_test)
_test_dset_predicted = controller.predict_raw_dset(_test_dset,
                                                   do_filtering=True, # since we have some text filtering in the processing
                                                  )
-------------------- Start making predictions --------------------
df_test_predicted = _test_dset_predicted.to_pandas()
df_test_predicted.head()
Title Review Text input_ids attention_mask pred_Division Name pred_prob_Division Name pred_Department Name pred_prob_Department Name
0 perfect for work and play perfect for work and play . this shirt works f... [0, 20473, 13, 173, 8, 310, 479, 42, 6399, 136... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.628283 Tops 0.976219
1 . i don't know why i had the opposite problem ... [0, 4, 939, 218, 75, 216, 596, 939, 56, 5, 548... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.727283 Bottoms 0.992511
2 great pants great pants . thes e cords are great--lightwei... [0, 12338, 9304, 479, 5, 29, 364, 37687, 32, 3... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.685441 Bottoms 0.979834
3 surprisingly comfy for a button down surprisingly comfy for a button down . i am a ... [0, 33258, 3137, 24382, 13, 10, 6148, 159, 479... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.660995 Tops 0.962874
4 short and small short and small . the shirt is mostly a thick ... [0, 20263, 8, 650, 479, 5, 6399, 16, 2260, 10,... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... General 0.604513 Tops 0.943028

Predict top k results

_test_dset = Dataset.from_pandas(df_test)
_test_dset_predicted = controller.predict_raw_dset(_test_dset,
                                                   do_filtering=True,
                                                   topk=3
                                                  )
-------------------- Start making predictions --------------------
df_test_predicted = _test_dset_predicted.to_pandas()

df_test_predicted.head()
Title Review Text input_ids attention_mask pred_Division Name pred_prob_Division Name pred_Department Name pred_prob_Department Name
0 perfect for work and play perfect for work and play . this shirt works f... [0, 20473, 13, 173, 8, 310, 479, 42, 6399, 136... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [General, General Petite, Initmates] [0.62828326, 0.3495934, 0.022123374] [Tops, Intimate, Trend] [0.9762191, 0.020559784, 0.0010864006]
1 . i don't know why i had the opposite problem ... [0, 4, 939, 218, 75, 216, 596, 939, 56, 5, 548... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [General, General Petite, Initmates] [0.7272834, 0.2687256, 0.003990893] [Bottoms, Intimate, Trend] [0.9925114, 0.004263644, 0.002455687]
2 great pants great pants . thes e cords are great--lightwei... [0, 12338, 9304, 479, 5, 29, 364, 37687, 32, 3... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [General, General Petite, Initmates] [0.68544143, 0.30039048, 0.01416805] [Bottoms, Intimate, Trend] [0.97983354, 0.018011613, 0.0015884736]
3 surprisingly comfy for a button down surprisingly comfy for a button down . i am a ... [0, 33258, 3137, 24382, 13, 10, 6148, 159, 479... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [General, General Petite, Initmates] [0.66099477, 0.3112359, 0.027769288] [Tops, Intimate, Dresses] [0.9628739, 0.032319617, 0.0018878386]
4 short and small short and small . the shirt is mostly a thick ... [0, 20263, 8, 650, 479, 5, 6399, 16, 2260, 10,... [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [General, General Petite, Initmates] [0.6045134, 0.33937424, 0.056112316] [Tops, Intimate, Trend] [0.94302803, 0.05410044, 0.001068312]
# Since we have some metadatas (Title), we need to define a dictionary containing those values
raw_content={'Review Text': 'This shirt is so comfortable I love it!',
             'Title': 'Great shirt'}
df_result = controller.predict_raw_text(raw_content,topk=3)
-------------------- Start making predictions --------------------
df_result
{'Review Text': ['great shirt . this shirt is so comfortable i love it !'],
 'Title': ['great shirt'],
 'input_ids': [[0,
   12338,
   6399,
   479,
   42,
   6399,
   16,
   98,
   3473,
   939,
   657,
   24,
   27785,
   2]],
 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
 'pred_Division Name': [['General', 'General Petite', 'Initmates']],
 'pred_prob_Division Name': [[0.6413698196411133,
   0.34388816356658936,
   0.014742041006684303]],
 'pred_Department Name': [['Tops', 'Intimate', 'Trend']],
 'pred_prob_Department Name': [[0.9790199398994446,
   0.018422359600663185,
   0.0012304459232836962]]}