Roberta Classifiers
Classification head
ConcatHeadExtended
ConcatHeadExtended (config, classifier_dropout=0.1, last_hidden_size=768, layer2concat=4, num_labels=None, **kwargs)
Concatenated head for Roberta Classification Model. This head takes the last n hidden states of [CLS], and concatenate them before passing through the classifier head
Type | Default | Details | |
---|---|---|---|
config | HuggingFace model configuration | ||
classifier_dropout | float | 0.1 | Dropout ratio (for dropout layer right before the last nn.Linear) |
last_hidden_size | int | 768 | Last hidden size (before the last nn.Linear) |
layer2concat | int | 4 | number of hidden layer to concatenate (counting from top) |
num_labels | NoneType | None | Number of label output. Overwrite config.num_labels |
kwargs |
ConcatHeadSimple
ConcatHeadSimple (config, classifier_dropout=0.1, layer2concat=4, num_labels=None, **kwargs)
Concatenated head for Roberta Classification Model, the simpler version (no hidden linear layer) This head takes the last n hidden states of [CLS], and concatenate them before passing through the classifier head
Type | Default | Details | |
---|---|---|---|
config | HuggingFace model configuration | ||
classifier_dropout | float | 0.1 | Dropout ratio (for dropout layer right before the last nn.Linear) |
layer2concat | int | 4 | number of hidden layer to concatenate (counting from top) |
num_labels | NoneType | None | Number of label output. Overwrite config.num_labels |
kwargs |
RobertaClassificationHeadCustom
RobertaClassificationHeadCustom (config, classifier_dropout=0.1, num_labels=None, **kwargs)
*Same as RobertaClassificationHead, but you can freely adjust dropout
Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py#L1424*
Type | Default | Details | |
---|---|---|---|
config | HuggingFace model configuration | ||
classifier_dropout | float | 0.1 | Dropout ratio (for dropout layer right before the last nn.Linear) |
num_labels | NoneType | None | Number of label output. Overwrite config.num_labels |
kwargs |
Main classification architecture
RobertaBaseForSequenceClassification
RobertaBaseForSequenceClassification (config, is_multilabel=False, is_multihead=False, head_class_sizes=[], head_weights=[], head_class=None, **head_class_kwargs)
*Base Roberta Architecture for Sequence Classification task
Based on: https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py#L1155C35-L1155C35*
Type | Default | Details | |
---|---|---|---|
config | HuggingFace model configuration | ||
is_multilabel | bool | False | Whether this is a multilabel classification |
is_multihead | bool | False | Whether this is a multihead (multi-level) classification |
head_class_sizes | list | [] | Class size for each head |
head_weights | list | [] | loss weight for each head. This will be multiplied to the loss of each head’s output |
head_class | NoneType | None | The class object of the head. You can use RobertaClassificationHeadCustom as default |
head_class_kwargs |